Membrane capacitance of cortical neurons and glia during sleep oscillations and spike-wave seizures.

نویسندگان

  • F Amzica
  • D Neckelmann
چکیده

Dual intracellular recordings in vivo were used to disclose relationships between cortical neurons and glia during spontaneous slow (<1 Hz) sleep oscillations and spike-wave (SW) seizures in cat. Glial cells displayed a slow membrane potential oscillation (<1 Hz), in close synchrony with cortical neurons. In glia, each cycle of this oscillation was made of a round depolarizing potential of 1.5-3 mV. The depolarizing slope corresponded to a steady depolarization and sustained synaptic activity in neurons (duration, 0.5-0.8 s). The repolarization of the glial membrane (duration, 0.5-0.8 s) coincided with neuronal hyperpolarization, associated with disfacilitation, and suppressed synaptic activity in cortical networks. SW seizures in glial cells displayed phasic events, synchronized with neuronal paroxysmal potentials, superimposed on a plateau of depolarization, that lasted for the duration of the seizure. Measurements of the neuronal membrane capacitance during slow oscillating patterns showed small fluctuations around the resting values in relation to the phases of the slow oscillation. In contrast, the glial capacitance displayed a small-amplitude oscillation of 1-2 Hz, independent of phasic sleep and seizure activity. Additionally, in both cell types, SW seizures were associated with a modulatory, slower oscillation ( approximately 0.2 Hz) and a persistent increase of capacitance, developing in parallel with the progression of the seizure. These capacitance variations were dependent on the severity of the seizure and the distance between the presumed seizure focus and the recording site. We suggest that the capacitance variations may reflect changes in the membrane surface area (swelling) and/or of the interglial communication via gap junctions, which may affect the synchronization and propagation of paroxysmal activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex.

This study investigated the fluctuations in the membrane potential of cortical neurons and glial cells during the slow sleep oscillation and spike-wave (SW) seizures. We performed dual neuron-glia intracellular recordings together with multisite field potential recordings from cortical suprasylvian association areas 5 and 7 of cats under ketamine-xylazine anesthesia. Electrical stimuli applied ...

متن کامل

Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo.

The ability of neuroglia to buffer local increases of extracellular K(+) has been known from in vitro studies. This property may confer on these cells an active role in the modulation and spreading of cortical oscillatory activities. We addressed the question of the spatial buffering in vivo by performing single and double intraglial recordings, together with measures of the extracellular K(+) ...

متن کامل

A neural mass model of CA1-CA3 neural network and studying sharp wave ripples

We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...

متن کامل

Glial and neuronal interactions during slow wave and paroxysmal activities in the neocortex.

Increasing evidence suggests that glial cells are endowed with the ability to externalize their activity to the extracellular space and to neurons. Since the same activity is influenced by the extracellular ionic concentrations and the neurotransmitters released by neurons, it is suggested that neurons and glia entertain a continuous exchange of information. This behavior might have a particula...

متن کامل

Intracellular study of excitability in the seizure-prone neocortex in vivo.

The excitability of neocortical neurons from cat association areas 5-7 was investigated during spontaneously occurring seizures with spike-wave (SW) complexes at 2-3 Hz. We tested the antidromic and orthodromic responsiveness of neocortical neurons during the "spike" and "wave" components of SW complexes, and we placed emphasis on the dynamics of excitability changes from sleeplike patterns to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 82 5  شماره 

صفحات  -

تاریخ انتشار 1999